All Questions

Filter by
Sorted by
Tagged with
5 votes
1 answer
415 views

What is $e^{- \zeta_{\Delta} '(0)}$ for a $\Delta$ the Laplacian of a manifold?

For a connected, finite graph $G$, let $\lambda_1, \ldots, \lambda_n$ denote the nonzero eigenvalues of the graph Laplacian. We define $\zeta_G = \Sigma_{i = 1}^n \lambda_i^s$. Then Kirkoffs Matrix-...
Areaperson's user avatar
  • 1,422
28 votes
6 answers
3k views

Why is there no symplectic version of spectral geometry?

First, recall that on a Riemannian manifold $(M,g)$ the Laplace-Beltrami operator $\Delta_g:C^\infty(M)\to C^\infty(M)$ is defined as $$ \Delta_g=\mathrm{div}_g\circ\mathrm{grad}_g, $$ where the ...
B K's user avatar
  • 1,880
18 votes
2 answers
2k views

Eigenvalues of the Laplace-Beltrami operator on a compact Riemannnian manifold

Let $(M,g)$ be a compact Riemannian manifold, and let $\Delta_g$ be its Laplace-Beltrami operator. A "well-known fact" is that the eigenvalues of $\Delta_g$ have finite multiplicity and tend to ...
Max Schattman's user avatar
18 votes
3 answers
1k views

Spectral properties of the Laplace operator and topological properties

Suppose that $M$ is a closed Riemannian manifold: one can construct the so called Laplace-Beltrami operator on $M$. Its spectrum contains some information of the underlying manifold: for example its ...
Justynaw's user avatar
  • 181
10 votes
2 answers
1k views

What are first eigenfunctions of Laplacian for $CP^n$ with Fubini-Study metric?

I know the round $n$-sphere has $f_i=\cos(dist(e_i, x))$ as the set of first eigenfunctions for $e_i=(0, \cdots, 1, \cdots, 0)\in \mathbb R^{n+1}$. i.e. $\Delta f_i=\lambda_1 f$, where $\lambda_1$ is ...
J. GE's user avatar
  • 2,573
8 votes
1 answer
399 views

$C^k$ one-parameter family of metrics

Consider a smooth Riemannian manifold $M$ and a $C^k$ one-parameter family of Riemannian metrics $g_t$ on $M$. Here $k$ could be any integer, $k$ could be infinity, when the one-parameter family $g_t$ ...
SMS's user avatar
  • 1,293
3 votes
0 answers
232 views

Does the zeta regularized Laplacian determinant measure the volume of some parameter space? How many "spanning trees" on a manifold?

Let $(M,g)$ be a Riemannian manifold, with Laplacian $\Delta$. If $\lambda_i$ are the nonzero eigenvalues of $\Delta$, we can define the zeta function $\zeta(s) = \Sigma \lambda_i^{-s}$. By analytic ...
Areaperson's user avatar
  • 1,422