Questions tagged [braided-tensor-categories]

Filter by
Sorted by
Tagged with
5 votes
0 answers
116 views

Does a fusion ring with F and R-symbols uniquely determine a braided tensor category?

Background : In mathematical physics, 'anyons' in (2+1) dimensional systems are described by braided tensor categories. The anyon types correspond to the irreducible objects of the category. From such ...
Alex_Bols's user avatar
5 votes
1 answer
235 views

Tannakian reconstruction for braided categories

Let $\mathcal{C}$ be a symmetric monoidal category. One can imagine a theorem Tannakian reconstruction: If $\mathcal{B}$ is a braided monoidal category and $F:\mathcal{B}\to \mathcal{C}$ is a functor ...
Pulcinella's user avatar
  • 5,278
0 votes
0 answers
65 views

Is a Lagrangian subgroup of a metric group isomorphic to its quotient?

A metric group is a finite abelian group $G$ with a quadratic function $$q:G\rightarrow \mathbb R/\mathbb Z\;,$$ that is, $$M(a,b):= q(a+b)-q(a)-q(b)$$ is bilinear in $a$ and $b$ [edit: and non-...
Andi Bauer's user avatar
  • 2,839
7 votes
1 answer
287 views

Easy example of a non-symmetric braiding of $\operatorname{Rep}(G)$?

What is the smallest group $G$ such that $\operatorname{Rep}(G)$ has a non-symmetric braiding (or just an easy example)? I seem to remember a result classifying all universal $R$-matrices of $\mathbb ...
shin chan's user avatar
  • 301
2 votes
0 answers
64 views

Naturality of ribbon category twists

Tortile Tensor Categories by Shum defines a twist to be a natural transformation $\theta : \operatorname{Id} \to \operatorname{Id}$ satisfying some axioms. However, wikipedia and nLab worded the ...
Trebor's user avatar
  • 779
8 votes
1 answer
298 views

Is there a notion of "knot category"?

Consider a rigid braided monoidal category, with braiding $\beta_{x,y} : x \otimes y \cong y \otimes x$, and every object has a dual such that $\epsilon_x : 1 \to a \otimes a^*, \bar\epsilon_x : a^* \...
Trebor's user avatar
  • 779
1 vote
0 answers
98 views

Lagrangian subcategories of (non-pointed) braided tensor categories

I am interested in generalising the following claim in On braided fusion categories I (Remarks 4.67.) “A braided fusion category $\mathcal C$ may have more than one Lagrangian subcategory. E.g., if $\...
Anne O'Nyme's user avatar
5 votes
1 answer
167 views

Why is the category of strong braided functors from the braid category to a braided monoidal $M$ equivalent to the subcategory of *strict* functors?

This is my first, and probably my last, (for a while) posting on MO. I am very much a student and I don't claim to be a research mathematician, at all, but I have seen that sometimes "regular&...
FShrike's user avatar
  • 477
7 votes
2 answers
195 views

Where does the univeral $R$-matrix of $U_q(\mathfrak g)$ live?

Let $\mathfrak g$ be a complex simple Lie algebra and let $U_q(\mathfrak g)$ denote the Drinfeld-Jimbo quantum group associated to $\mathfrak g$. I will assume that $U_q(\mathfrak g)$ is a $\mathbb C(...
Hadi's user avatar
  • 691
4 votes
1 answer
377 views

Motivating quantum groups from knot invariants

Quantum groups are useful for making knot/link invariants: for example, $U_q(\mathfrak{sl}_2$) you get the Jones polynomial. This boils down to the fact that $\mathcal C = \operatorname{rep }U_q(\...
Steve's user avatar
  • 2,213
9 votes
2 answers
360 views

Coherence theorem in braided monoidal categories

In MacLane's Categories for the working mathematician, the author shows that the evaluation at 1 gives an equivalence of categories $\mathrm{hom}_{\mathrm{BMC}}(B,M)\simeq M_0$ where $B$ is the braid ...
QGM's user avatar
  • 201
3 votes
0 answers
134 views

How to calculate the Lagrangian subgroup of $G\oplus\hat{G}$?

Let $G$ be an finite abelian group. We have known the following things: Denote the Drinfeld center of $\operatorname{Rep}(G)$ by $\mathfrak{Z}_1(\operatorname{Rep}...
Bai's user avatar
  • 31
1 vote
1 answer
118 views

Braided R-matrices for finite action groupoids

1. Algebra from action groupoids Let $G$ be a finite group acting on a finite set $X$ from the right (denoted in element as $x^{g}$). We have an algebra (of the action groupoid) over $\mathbb{C}$: the ...
Student's user avatar
  • 4,760
5 votes
2 answers
247 views

What is the proof of the compatibility of a braiding with the unitors?

I am specifically referencing the property that, given a braided monoidal category with a braiding $c$ and left and right unitors $\lambda, \rho$, $$ \lambda_A \circ c_{A,I}=\rho_{A}, $$ for any ...
naahiv's user avatar
  • 303
4 votes
1 answer
236 views

Why is 'every braided monoidal category spacial'? [duplicate]

In his 2009 survey, Selinger ("A survey of graphical languages for monoidal categories") defines the notion of a 'spacial monoidal category', which (in his graphical calculus) allows one to ...
naahiv's user avatar
  • 303
4 votes
1 answer
128 views

An introductory reference for tensor networks

I found a good reference on Tensor Networks: https://arxiv.org/abs/1912.10049. But I need an introductory reference with detailed proofs on Tensor Networks. Do you know another reference?
Aram's user avatar
  • 109
5 votes
1 answer
105 views

Connection between braided tensor categories and local systems on moduli of stable marked genus zero curves

I'm looking for references regarding an unpublished Deligne's manuscript "Une descrption de catégorie tressée (inspiré par Drinfeld)" and the subject it touches, that is described in the ...
Rebour's user avatar
  • 53
5 votes
1 answer
446 views

Braided monoidal category, example

Let $H$ be a cocommutative hopf algebra. Let $M$ be the category of $H$-bimodules. Does the category $M$ form a braided monoidal category with tensor product $\otimes_{H}$ ?
lun's user avatar
  • 69
5 votes
1 answer
439 views

Deligne Tensor Product of Categories, Explicit Equivalence of $A\otimes_\mathbb{C} B\text{-Mod} \cong A\text{-Mod}\boxtimes B\text{-Mod}$

$\newcommand\Mod[1]{#1\text{-Mod}}$Does any one have a reference on a explicit equivalence between $$\Mod{A\otimes_\mathbb{C} B} \cong \Mod A\boxtimes \Mod B?$$ The proof in "Tensor Categories ...
Andy Nguyen's user avatar
5 votes
2 answers
235 views

Constructing the inverse of a braiding in a braided pivotal category

Assume we have a braided pivotal monoidal category. This means we assume the braiding $c$ to be a natural isomorphism. But looking at the corresponding string diagram, it seems to me as if we could ...
javra's user avatar
  • 105
4 votes
1 answer
230 views

Drinfeld center of $\mathrm{Mod}_R$

Let $R$ be a commutative ring and let $\mathrm{Mod}_R$ be the category of (left) $R$-modules. Question: Is it true that the categories $\mathcal{Z}(\mathrm{Mod}_R)$ and $\mathrm{Mod}_R$ are ...
Minkowski's user avatar
  • 569
1 vote
0 answers
115 views

Recovering the center of a monoid from the Drinfeld center

The Drinfeld center construction is intended to be a categorification of the center of a monoid. It seems to be folklore (eg this answer or this one) that when the Drinfeld center is taken over a ...
Minkowski's user avatar
  • 569
7 votes
1 answer
334 views

Ordered logic is the internal language of which class of categories?

Wikipedia says: The internal language of closed symmetric monoidal categories is linear logic and the type system is the linear type system. "A Fibrational Framework for Substructural and Modal ...
GeoffChurch's user avatar
5 votes
0 answers
128 views

Can a braided fusion category have an order-2 Morita equivalence class which cannot be simultaneously connected and isomorphic to its opposite?

Let $\mathcal{B}$ be a braided fusion category over $\mathbb{C}$. Let me write $\mathrm{Alg}(\mathcal{B})$ for the set of isomorphism classes of unital associative algebra objects in $\mathcal{B}$, ...
Theo Johnson-Freyd's user avatar
5 votes
1 answer
220 views

Categorical Morita equivalence implies equivalence of module categories?

Classically, two rings $R$ and $S$ are Morita equivalent if and only if any of the following is true ($R$-Mod) $\simeq$ ($S$-Mod). $S \simeq Hom_R(M,M)$, where $M$ is a finitely generated projective ...
Student's user avatar
  • 4,760
12 votes
1 answer
283 views

Can one show corbordism invariance of the Crane-Yetter state-sum using simplicial methods / are there 'Pachner-like' moves for cobordisms?

Let $\mathcal{C}$ denote some Unitary Braided Modular Fusion Category. It is well known that the Crane-Yetter state-sum, $Z_{CY}(\bullet|\mathcal{C})$ is an oriented-cobordism invariant. In other ...
Joe's user avatar
  • 525
2 votes
1 answer
185 views

Comodule Morita equivalence for Hopf algebras

Let $A$ and $B$ be two Hopf algebras, and denote by $\mathcal{M}^A$ and $\mathcal{M}^B$ their respective categories of right comodules. If we have a monoidal equivalence between $\mathcal{M}^A$ and $\...
Jake Wetlock's user avatar
  • 1,104
10 votes
2 answers
701 views

Is there a non-degenerate quadratic form on every finite abelian group?

Let $G$ be a finite abelian group. A quadratic form on $G$ is a map $q: G \to \mathbb{C}^*$ such that $q(g) = q(g^{-1})$ and the symmetric function $b(g,h):= \frac{q(gh)}{q(g)q(h)}$ is a bicharacter, ...
Sebastien Palcoux's user avatar
4 votes
1 answer
383 views

Does the functor $\mathcal{C} \to \mathcal{Z}(\mathcal{C})$ have adjoints?

Let $\mathcal{C}$ be a braided monoidal category. We have a canonical functor $\mathcal{C} \to \mathcal{Z}(\mathcal{C})$ from $\mathcal{C}$ to the Drinfeld center $\mathcal{Z}(\mathcal{C})$ sending an ...
Bipolar Minds's user avatar
1 vote
0 answers
96 views

When is the action of the braid group on tensor powers of Yetter-Drinfeld modules faithful?

Let $V$ be a Yetter-Drinfeld module over a Hopf algebra $H$ with invertible antipode. Recall that $V$ is a braided vector space with braiding $\Psi\colon V\otimes V\to V\otimes V, v\otimes w\mapsto v_{...
Christoph Mark's user avatar
2 votes
0 answers
72 views

On $\Psi$-generating paths in the Bruhat order of a Weyl group

Let $W$ be a Weyl group with roots $R$ and positive roots $R^+$. Let $v\in W$ of length $r$. We call $\mathbb{m}=(\alpha_1,\ldots,\alpha_r)\in(R^+)^r$ a Bruhat path from $1$ to $v$ if $1\lessdot s_{\...
Christoph Mark's user avatar
5 votes
2 answers
507 views

Representation theory in braided monoidal categories

The crux of what I wish to know is what results from representation theory, a subject usually framed within the category $\text{Vect}_\mathbb{k}$, follow in more general braided monoidal categories? I ...
Ted Jh's user avatar
  • 191
4 votes
0 answers
165 views

additivity of trace with respect to short exact sequences

Let $\mathcal{C}$ be an abelian rigid symmetric monoidal category over a field $K$. Assume that the endomorphism ring of the tensor unit in $\mathcal{C}$ is $K$. If $X$ is an object in $\mathcal{C}$ ...
Ehud Meir's user avatar
  • 4,969
1 vote
0 answers
87 views

Braided category inside braided 2-category

Let $\mathcal{C}$ be a semistrict braided monoidal $2$-category in the sense of [BN] (so in particular a strict $2$-category). Let $\mathcal{C}_1$ be the category of $1$-morphisms (objects) and $2$-...
Bipolar Minds's user avatar
8 votes
1 answer
279 views

R-matrices and symmetric fusion categories

Given a $\mathbb{C}$-linear braided fusion category $\mathcal{C}$ containing a fusion rule of the form e.g. \begin{equation}X\otimes Y\cong A\oplus B \oplus C\end{equation} (where $A,B, C, X$ and $Y$ ...
Meths's user avatar
  • 277
3 votes
1 answer
133 views

Integrals and finite dimensionality in braided Hopf algebras

Let $H$ be a Hopf algebra with invertible antipode. Let $A$ be a braided Hopf algebra in the Yetter-Drinfeld category ${}_H^H\mathcal{YD}$ over $H$. A nonzero left integral in $A$ is a nonzero ...
Christoph Mark's user avatar
4 votes
1 answer
155 views

Is the center of an abelian rigid monoidal category, abelian?

Is the Drinfeld-Majid center of an abelian rigid monoidal category, abelian? [stated in 1J of On the center of fusion categories" by Bruguières and Virelizier (link at Virelizier's page)] In ...
AMaths's user avatar
  • 91
11 votes
1 answer
694 views

Is the category $\operatorname{sVect}$ an "algebraic closure" of $\operatorname{Vect}$?

$\DeclareMathOperator\sVect{sVect}\DeclareMathOperator\Vect{Vect}$The category $\sVect_k$ of (let's say finite-dimensional) super vector spaces can be obtained from the category $\Vect_k$ of (finite-...
Tim Campion's user avatar
  • 59k
1 vote
0 answers
84 views

On reflexive bialgebras

Let $A$ be a bialgebra. We can consider $A$ as a relfexive algebra (i.e. $A\cong A^{o*}$) or relfexive coalgebra (i.e. $A\cong A^{*o}$ where in each case $o$ denotes what is sometimes called ...
Christoph Mark's user avatar
4 votes
0 answers
99 views

Tensor algebras in the bicategory $\mathsf{2Vect}$

To my knowledge there are two main approaches to categorify the notion of a vector space. I will refer to them as BC-2-vector spaces (Baez, Crans) and KV-2-vector spaces (Kapranov, Voevodsky). Both ...
Bipolar Minds's user avatar
3 votes
1 answer
535 views

Examples of strict monoidal categories and monoidal categories with nontrivial associators

What are some "natural" motivating examples of the following: i) A strict monoidal category, ii) A monoidal with non-trivial associatots? For i) the only examples I know are categories which ...
Jake Wetlock's user avatar
  • 1,104
6 votes
1 answer
179 views

Nonbraided rigid monoidal category where left and right duals coincide

In a braided rigid monoidal category $(\mathcal{M},\otimes)$ left and right duals coincide. What is an example of a rigid monoidal category where left and right duals coincide but there exist no ...
Fofi Konstantopoulou's user avatar
2 votes
0 answers
60 views

Integrals in noncommutative graded algebras which are not necessarily Hopf

Let $\mathbf{k}$ be a field. Let $A$ be a finite dimensional $\mathbb{Z}_{\geq 0}$-graded $\mathbf{k}$-algebra such that $A^0=\mathbf{k}1$. Let $m$ be the maximal non-negative integer such that $A^m\...
Christoph Mark's user avatar
4 votes
0 answers
74 views

Categorical construction of comodule category of FRT algebra

Let $\mathcal{B}$ denote the braid groupoid, with objects being non-negative integers $n \in \mathbb{Z}_{\geq 0}$ and morphisms $\mathcal{B}(n,n)=B_{n}$ given by the braid group. Let $\mathcal{C}$ be ...
Bipolar Minds's user avatar
9 votes
4 answers
2k views

The tensor product of two monoidal categories

Given two monoidal categories $\mathcal{M}$ and $\mathcal{N}$, can one form their tensor product in a canonical way? The motivation I am thinking of is two categories that are representation ...
Nadia SUSY's user avatar
5 votes
1 answer
194 views

Under what conditions is a symmetric tensor category equivalent to $\operatorname{\mathsf{Rep}}G$ for some group $G$?

Deligne's theorem on tensor categories states that for any symmetric tensor category $\mathcal{C}$ satisfying the subexponential growth condition, there is a fiber functor to $\mathsf{sVec}$ and that $...
djbinder's user avatar
  • 275
4 votes
0 answers
101 views

Scaling Yetter--Drinfeld Modules

A braided vector space is a pair $(V,\sigma)$ consisting of a vector space $V$, and a linear map $\sigma:V \otimes V \to V \otimes V$, satisfying the Yang--Baxter equation. Ee can scale the braiding ...
Nadia SUSY's user avatar
4 votes
0 answers
113 views

semisimplicity of maps in braided vector spaces

Let $V$ be a finite dimensional braided vector space over $\mathbb{C}$. This means that we have a map $$c_{V,V}:V\otimes V\to V\otimes V$$ which gives us an action of the braid group $B_n$ on $V^{\...
Ehud Meir's user avatar
  • 4,969
9 votes
2 answers
351 views

What is a true invariant of $G$-crossed braided fusion categories?

Definition. An invariant of a (spherical) fusion category with extra structure is a number or a set or tuple of numbers preserved under (appropriate) equivalences. (Spherical) fusion categories have ...
Manuel Bärenz's user avatar
18 votes
2 answers
4k views

What is a tensor category?

A monoidal category is a well-defined categorical object abstracting products to the categorical setting. The term tensor category is also used, and seems to mean a monoidal category with more ...
Nadia SUSY's user avatar